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Viscous flow about a submerged circular cylinder
induced by free-surface travelling waves
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Viscous flow about a circular cylinder that is submerged beneath free-surface travelling
waves is considered. The wave amplitude is assumed small and results are presented
for a wide range of Reynolds number. Particular attention is focused on the second-
order time-averaged flow that manifests itself as a circulatory motion about the
cylinder. The paper complements earlier work on this problem by Yan & Riley (1996)
in the large Reynolds number, boundary-layer, regime and Riley & Yan (1996) in
the inviscid flow limit, and makes a comparison with experimental work by Chaplin
(1984) possible.

1. Introduction
In this paper we consider the two-dimensional flow induced in an incompressible,

viscous fluid of infinite depth when monochromatic free-surface travelling waves
propagate over a submerged circular cylinder whose generators are parallel to the
wave crests. The amplitude of the incident waves is assumed to be small compared
with the cylinder radius. Particular attention is paid to the second-order time-averaged
flow that results in circulation about the cylinder.

The flow about a submerged circular cylinder, induced by small-amplitude free-
surface travelling waves, has attracted attention over many years. The most recent
interest is on account of the possible application to the flow about the submerged
horizontal pontoons of tension-leg platforms. Dean (1948) and Ursell (1950) demon-
strated that for an inviscid fluid of infinite depth the first-order reflection coefficient
is zero. Vada (1987) continued this investigation to higher order, and his results
suggested that the reflection coefficient at second order is also zero. This result was
confirmed independently by Wu (1991) from a careful numerical investigation, and
unequivocally by McIver & McIver (1990) by analytical means. Riley & Yan’s (1996)
numerical solutions are also in accord with this result. They complete the solution
at second order by including the time-independent, or streaming, motion about the
cylinder. This cannot be determined uniquely when the fluid is inviscid and in a
subsequent paper, Yan & Riley (1996), they consider a fluid of very small viscosity.
There is a boundary layer of double structure at the cylinder surface, and it is the
relationship of this to the inviscid flow that uniquely determines the solution. This
results in a non-zero time-averaged circulation about the cylinder. Recent experiments
by Chaplin & Retzler (1997) confirm the presence of such circulation. The aim of
the present paper is to extend the work of Yan & Riley (1996), who were concerned
with an almost inviscid fluid, to finite values of the Reynolds number. This allows a
comparison with some of the experimental results presented by Chaplin (1984) to be
made.
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The plan of the paper is as follows. In § 2 we briefly recapitulate the inviscid
theory since the results from this will be used as approximate boundary conditions,
in particular at the free surface. In § 3 we develop a viscous theory with a Reynolds
number Rb based on a velocity ωa, where ω is the frequency of the incident waves,
and cylinder radius a, that is O(1). This is independent of ε = A/a, where A is the
wave amplitude, but solutions are obtained only for ε� 1 in § 4. Section 5 is devoted
to the same parameter range, but takes advantage of the small wave amplitude by
developing the solution as a regular perturbation series in powers of ε. Both of these
approaches encounter difficulties when Rb is large, on account of the thin Stokes
shear-wave layer that develops on the cylinder surface. As a consequence for larger
Reynolds numbers, specifically Rb = O(ε−2), we introduce a singular perturbation
theory in § 6. In § 7 we discuss results. In particular we note the good agreement
between the results of §§ 4 and 5, and conclude that the perturbation method is to
be preferred on account of its computational efficiency. Results from the singular
perturbation approach of § 6 provide a link between those of §§ 4, 5 and the almost
inviscid, or infinite Reynolds number, theory of Yan & Riley (1996).

2. Inviscid theory
To prepare for the viscous calculations which follow we first, in this section,

consider the flow that arises when two-dimensional waves at the free surface of an
incompressible, inviscid fluid of infinite depth propagate over a submerged circular
cylinder whose generators are parallel to the wave crest. If a is the radius of the
cylinder, A the amplitude of the incident waves whose frequency is ω, and g the
acceleration due to gravity, we define dimensionless quantities as follows:

x = x′/a, y = y′/a, ε = A/a, h = H/a,
k = aω2/g, t = ωt′, η = η′/a, φ = φ′/ωa2.

}
(2.1)

In (2.1) x′, y′ are Cartesian coordinates whose origin is at the centre of the cylinder
with y′ measured vertically upwards, t′ is time, H is the depth of the centre of the
cylinder below the undisturbed free surface and η′ its elevation above it, φ′ is the
velocity potential of the flow, assumed irrotational. The non-dimensional geometry
of the problem is shown in figure 1.

The flow under consideration is governed by Laplace’s equation

∇2φ = 0, (2.2)

with boundary conditions at the free surface, derived from the kinematic and dynamic
boundary conditions at the free surface respectively as

∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂y
, (2.3)

η(x, t) = −k
[
∂φ

∂t
+

1

2

{(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
}]

. (2.4)

Under the assumption that ε� 1 we now develop a solution in the classical form

φ = εφ(1) + ε2φ(2) + ..., (2.5)

η = εη(1) + ε2η(2) + ... . (2.6)
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Figure 1. Non-dimensional geometry and solution domain.

If we substitute (2.5) into (2.2), then since the equation is linear each term φ(i)

satisfies Laplace’s equation. Consider next the free-surface conditions (2.3) and (2.4).
Not only are these nonlinear but are applied at a surface whose position is unknown
a priori. We substitute the expansions (2.5) and (2.6) into (2.3) and (2.4), and si-
multaneously we transfer the boundary conditions from the exact free surface to its
mean position y = h by expanding the potential and its derivatives as Taylor series.
Coefficients of like powers of ε then yield boundary conditions for the successive
terms of our expansions. From (2.4) the terms O(ε), O(ε2) give, respectively,

η(1) = −k
(
∂φ(1)

∂t

)
y=h

,

η(2) = −k
[
∂φ(2)

∂t
− k ∂φ

(1)

∂t

∂2φ(1)

∂y∂t
+

1

2

{(
∂φ(1)

∂x

)2

+

(
∂φ(1)

∂y

)2
}]

y=h

.

 (2.7)

Carrying out the same procedure with (2.3), and using (2.7) to eliminate η(1), η(2) we
have the conditions for φ(1) and φ(2) as

k
∂2φ(1)

∂t2
+
∂φ(1)

∂y
= 0, (2.8)

k
∂2φ(2)

∂t2
+
∂φ(2)

∂y
= k

∂φ(1)

∂t

(
k
∂3φ(1)

∂y∂t2
+
∂2φ(1)

∂y2

)
−2k

(
∂φ(1)

∂x

∂2φ(1)

∂x∂t
+
∂φ(1)

∂y

∂2φ(1)

∂y∂t

)
, (2.9)

where all terms in (2.8) and (2.9) are evaluated at y = h.
We now write φ(1), φ(2) as

φ(1) = φ11 cos t+ φ12 sin t = (φ01 + φ11) cos t+ (φ02 + φ12) sin t, (2.10)

φ(2) = φ20 + φ21 cos 2t+ φ22 sin 2t, (2.11)
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where φij = φij(x, y). In equation (2.10) the incident wave is represented as

φ01 cos t+ φ02 sin t = −1

k
ek(y−h) cos(kx− t) = φ0 (2.12)

say. On substituting (2.10) to (2.12) in (2.8) and (2.9) we derive the conditions at
y = h for φij , together with other boundary conditions subject to which the following
Laplace equations have to be solved:

∇2φij = 0, i = 1, j = 1, 2; i = 2, j = 0, 1, 2. (2.13)

Details of the solution method may be found, for example, in Riley & Yan (1996)
and will not be repeated here. If we now write the stream function ψ as

ψ = εψ(1) + ε2ψ(2) + ...
= ε(ψ11 cos t+ ψ12 sin t) + ε2(ψ20 + ψ21 cos 2t+ ψ22 sin 2t) + ...,

(2.14)

then each of these ψij may be determined from φ11, φ12, φ20, φ21 and φ22 using
the Cauchy–Riemann equations. We shall incorporate free-surface values of ψij , so
calculated, in our formulation of the viscous problem discussed below.

3. Viscous formulation
We consider a circular cylinder of radius a which is submerged in a fluid of viscosity

µ under free-surface travelling waves

η = η(x, t), (3.1)

where η is the elevation of the free surface above its mean position y = h. Under
the assumption of ε � 1 we neglect any terms higher than O(ε2) in η, and the free
surface elevation may then be approximated as

η = εη(1) + ε2η(2), (3.2)

where η(1) and η(2) are defined in (2.7).
If we define non-dimensional quantities as in (2.1), take U0 = aω as the scale for

velocity, then the two-dimensional governing equations for the viscous flow induced
by the travelling waves can be written in terms of the stream function ψ and vorticity
ζ as

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
=

1

Rb
∇2
xyζ, (3.3)

∇2
xyψ = −ζ, (3.4)

where

∇2
xy =

∂2

∂x2
+

∂2

∂y2
, (3.5)

and

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.6)

Rb = a2ω/ν is the Reynolds number based on the frequency of the surface waves
with ν the kinetic viscosity of the fluid.

If the plane-polar coordinate system (r, θ), with its origin located at the centre of
the cylinder, is chosen then the governing equations in terms of ψ and ζ may be
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written as
∂ζ

∂t
+

1

r

{
∂

∂r
(rurζ) +

∂

∂θ
(uθζ)

}
=

1

Rb
∇2
rθζ, (3.7)

∇2
rθψ = −ζ, (3.8)

where

∇2
rθ =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
, (3.9)

and

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (3.10)

The fluid depth is again taken to be infinite. We assume that at large distances from
the cylinder the flow is of potential type, and that the condition at the free surface
is determined from the inviscid solution. The boundary conditions to be satisfied by
(3.3)–(3.6), or (3.7)–(3.10) are then as follows:

∂ψ

∂r
=
∂ψ

∂θ
= 0, at r = 1,

ψ = εψ(1) + ε2ψ(2), ζ = 0, at y = h, xl 6 x 6 xr,
ψ = εψ(1) + ε2ψ(2), ζ = 0, when x = xl, xr, −∞ < y 6 h,
ψ = 0, ζ = 0, as y → −∞, xl 6 x 6 xr,

 (3.11)

where xl and xr are the left and right boundaries of the solution domain of which
the magnitudes are supposed to be large enough such that the numerical solution has
sufficient accuracy, but usually smaller than those in § 2. The boundary conditions
for ψ and ζ on the surface of the cylinder require care and we will return to this
point in the next section. Two methods have been applied to solve the above viscous
problem, namely a full numerical technique as described below and a perturbation
method with numerical aid which will be described in §§ 5 and 6.

4. Numerical solution Rb = O(1)

The computational grid that we use for our numerical solutions is a hybrid one, in
two parts. In the neighbourhood of the cylinder we use a grid based on plane-polar
coordinates, elsewhere a grid based on Cartesian coordinates. Central differences are
employed in our numerical scheme, and in the overlap domain flow variables are
interpolated between the grids using techniques that maintain second-order accuracy.
Since the solution domain extends to y = −∞ it is convenient, for computational
purposes, to introduce a new variable defined as

ξ = ξ(y) =


y, if y > yb

yb + α

(
1− yb

y

)
, if y < yb.

(4.1)

In (4.1) yb and α are constants to be chosen, with the requirement that yb < −re where
re is the radial extent of the polar grid, so that 1 < re < h. The solution domain is
now divided into three sub-domains, see figure 1, as

ΩI : 1 6 r 6 re, 0 6 θ < 2π,
ΩII : xl 6 x 6 xr, −∞ < y 6 yb,
ΩIII : {Ω \ {ΩI ∪ ΩII}} ∪ {re − 5hr 6 r 6 re, 0 6 θ < 2π},
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where hr is the mesh size in the radial direction. Note that, as defined, ΩI and ΩIII
share an overlap region in which interpolation of flow variables from one grid to the
other can be carried out easily.

Following the transformation (4.1), the governing equations on the rectangular grid
ΩII and ΩIII may be written as

∂ζ

∂t
+ u

∂ζ

∂x
+ β1v

∂ζ

∂ξ
=

1

Rb
∇2
xξζ, (4.2)

∇2
xξψ = −ζ, (4.3)

where

∇2
xξ =

∂2

∂x2
+ β2

∂2

∂ξ2
+ β3

∂

∂ξ
, (4.4)

and

u = β1

∂ψ

∂ξ
, v = −∂ψ

∂x
, (4.5)

with

β1 =

{
(ξ − α− yb)2/(αyb), in ΩII ,

1, in ΩIII ,
(4.6)

β2 = β2
1 , (4.7)

β3 =

{
2(ξ − α− yb)3/(αyb)

2, in ΩII ,

0, in ΩIII .
(4.8)

In our numerical scheme the mesh sizes in the t-, x-, ξ-, r-, and θ-directions are
denoted by ht, hx, hξ, hr and hθ respectively, with the number of mesh points in the
negative x-, positive x-, negative ξ-, positive ξ-, r- and θ-directions denoted respectively
by Mxl , Mxr , Nξs, Nξt, Mr and Nθ . The value of a typical dependent variable, say ψ, at
(xi, ξj , tl) = (ihx, jhξ, lht) in ΩII and ΩIII or (ri, θj , tl) = (1+ ihr, jhθ, lht) in ΩI is denoted
by ψi,j,l . A Crank–Nicolson scheme is employed for the vorticity transport equations
(3.7) and (4.2), whilst in the Poisson equations (3.8) and (4.3) the finite-difference
scheme is based on central differences. In the overlap region ΩI ∩ΩIII , as the solution
is carried from one mesh to the other, interpolation techniques are used that maintain
second-order accuracy.

There are no restrictions on the parameter α in (4.1). Here we relate it to the values
of of hξ and yb. With hξ given we have yb = −Nξbhξ , and we choose α such that
ξ(yb − hξ) = yb − hξ . This choice ensures that in the original plane the mesh size in
the y-direction is the same at points adjacent to y = yb. This requires

α{1− yb/(yb − hξ)}+ hξ = 0, (4.9)

or

α = yb − hξ; (4.10)

the total number of mesh points in the negative ξ-direction is Nξs = 2Nξb + 1.
In our stream function–vorticity formulation we require a boundary condition for

ζ at the cylinder surface. Following Woods (1954) the vorticity on the boundary may
be expressed in terms of its values at r − 1 = hr, 2hr , and the values of ψ at the first
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three grid points, to the accuracy of our finite-difference scheme, as

ζ0,j,l =
48ψ1,j,l − 3ψ2,j,l − 45ψ0,j,l + 2h2

r (4ζ1,j,l − ζ2,j,l)

4h2
r (hr − 3)

, j = 1, 2, ...Nθ, l = 1, 2, ... .

(4.11)
There remains, to complete the formulation of our problem, the constant value of
ψ, ψ0,j,l , at the cylinder. Solutions may be obtained for any value of this constant;
however, only one has any physical relevance, namely that which ensures the pressure
is single valued. From the momentum equation in the θ-direction this condition is
seen to require

I2π ≡ −
1

Rb

∫ 2π

0

(
∂3ψ

∂r3
+
∂2ψ

∂r2

)
r=1

dθ =
1

Rb

∫ 2π

0

(
∂ζ

∂r

)
r=1

dθ = 0, (4.12)

which, when discretized, yields an expression for ψ0,j,l in terms of ψi,j,l and ζi,j,l , i = 1, 2.
At each time step an iteration procedure is adopted to obtain a converged solution.

For the stream function over-relaxation accelerates convergence with a relaxation
factor, typically, 1.2 whilst for the vorticity under-relaxation is necessary with a
relaxation factor 0.5 for boundary points and, typically, 0.8 elsewhere. The iteration
procedure is carried out until both∑∣∣∣∣∣1− ζkii,j,l

ζki−1
i,j,l

∣∣∣∣∣ < σ, |I2π| < σ, (4.13)

where summation extends over all the mesh points, ki is an iteration count and σ a
pre-assigned tolerance which is taken as 10−4 for all the results that we present.

From the converged solution the lift L, and drag D, on the cylinder may be
determined from which we define lift and drag coefficients as

CL =
L

ρU2
0a

=
L

ρa3ω2
, CD =

D

ρU2
0a

=
D

ρa3ω2
. (4.14)

Each of these force coefficients includes contributions from both shear and normal
stresses, and are determined as

CL =
1

Rb

∫ 2π

0

ζr=1 cos θdθ −
∫ 2π

0

pr=1 sin θdθ, (4.15)

CD = − 1

Rb

∫ 2π

0

ζr=1 sin θdθ −
∫ 2π

0

pr=1 cos θdθ, (4.16)

where p = p′/ρU2
0 = p′/ρa2ω2. We note, from the θ-momentum equation, that

∂p

∂θ
=

1

Rb

(
∂ζ

∂r

)
r=1

(4.17)

and so, integrating the second term in each of (4.15), (4.16) by parts and using (4.17)
yields

CL = − 1

Rb

∫ 2π

0

{
∂

∂r

(
ζ

r

)}
r=1

cos θdθ, (4.18)

CD =
1

Rb

∫ 2π

0

{
∂

∂r

(
ζ

r

)}
r=1

sin θdθ. (4.19)
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5. Perturbation solution ε� 1, Rb = O(1)

The computational method described in § 4 is independent of ε; the problem is
characterized by the single parameter Rb. However, for the purposes for which we
employ the numerical scheme, ε is indirectly involved in the construction of the
boundary conditions at the free surface and x = xl, xr . This is based on the inviscid
analysis of § 2 in which it is assumed ε� 1. All the results we present in § 7, for the
numerical scheme of the full Navier–Stokes equations, are for small values of ε. It
therefore seems appropriate to exploit the smallness of ε in a perturbation scheme. As
we shall see, this leads to a more efficient means of calculating the time-independent
part of the solution that is of particular concern to us.

With ε� 1 we expand the stream function and vorticity, respectively, as

ψ(x, t) = εψ1(x, t) + ε2{ψ(u)
2 (x, t) + ψ(s)(x)}+ O(ε3), (5.1)

ζ(x, t) = εζ1(x, t) + ε2{ζ(u)
2 (x, t) + ζ(s)(x)}+ O(ε3). (5.2)

In these equations x is a position vector and the subscripts (u) and (s) emphasize the
time-dependent and time-independent components of the solution at O(ε2). For the
domains ΩII , ΩIII , we now substitute (5.1), (5.2) into equations (4.2), (4.3) and equate
coefficients of like powers of ε to get:

at O(ε)

∂ζ1

∂t
=

1

Rb
∇2
xξζ1, (5.3)

∇2
xξψ1 = −ζ1; (5.4)

at O(ε2)

for the time-dependent part

∂ζ
(u)
2

∂t
+ β1

{
∂(ζ1, ψ1)

∂(x, ξ)

}(u)

=
1

Rb
∇2
xξζ

(u)
2 , (5.5)

∇2
xξψ

(u)
2 = −ζ(u)

2 , (5.6)

and for the time-independent part

β1

{
∂(ζ1, ψ1)

∂(x, ξ)

}(s)

=
1

Rb
∇2
xξζ

(s), (5.7)

∇2
xξψ

(s) = −ζ(s). (5.8)

There are equations corresponding to (5.3)–(5.8) in ΩI , derived from equations (3.7),
(3.8) that we do not find necessary to reproduce here.

It is convenient to separate the variables in (5.3)–(5.6), and the corresponding
equations in ΩI , by writing

ψ1 = F1 cos t+ f1 sin t, ψ
(u)
2 = F2 cos 2t+ f2 sin 2t,

ζ1 = G1 cos t+ g1 sin t, ζ
(u)
2 = G2 cos 2t+ g2 sin 2t,

}
(5.9)

where fi, Fi, gi, Gi(i = 1, 2) are unknown functions of either (x, ξ) in ΩII , ΩIII or (r, θ)
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in ΩI . Substituting (5.9) in (5.3)–(5.6), and their counterparts in ΩI , yields

∇2G1 = Rbg1, ∇2g1 = −RbG1, ∇2F1 = −G1, ∇2f1 = −g1, (5.10)

∇2G2 = XG + 2Rbg2, ∇2g2 = Xg − 2RbG2, ∇2F2 = −G2, ∇2f2 = −g2, (5.11)

and (5.7), (5.8) can be written as

∇2ζ(s) = Xs, ∇2ψ(s) = −ζ(s). (5.12)

In equations (5.10)–(5.12) ∇2 represents ∇2
xξ in ΩII , ΩIII or ∇2

rθ in ΩI ; other quantities
are defined as

XG =
β1Rb

2

{
∂(G1, F1)

∂(x, ξ)
− ∂(g1, f1)

∂(x, ξ)

}
,

Xg =
β1Rb

2

{
∂(G1, f1)

∂(x, ξ)
+
∂(g1, F1)

∂(x, ξ)

}
,

Xs =
β1Rb

2

{
∂(g1, f1)

∂(x, ξ)
+
∂(G1, F1)

∂(x, ξ)

}
,


in ΩII , ΩIII (5.13)

or

XG =
Rb

2r

{
∂(G1, F1)

∂(r, θ)
− ∂(g1, f1)

∂(r, θ)

}
,

Xg =
Rb

2r

{
∂(G1, f1)

∂(r, θ)
+
∂(g1, F1)

∂(r, θ)

}
,

Xs =
Rb

2r

{
∂(g1, f1)

∂(r, θ)
+
∂(G1, F1)

∂(r, θ)

}
,


in ΩI. (5.14)

The boundary conditions to be satisfied by equations (5.10)–(5.12) are as follows:

Fi = ψi1, fi = ψi2, ψ(s) = ψ20,
Gi = gi = 0 (i = 1, 2), ζ(s) = 0,

}
on x = xl, xr, 2yb − hξ 6 ξ 6 h,
and at ξ = h, xl 6 x 6 xr,

(5.15)

Fi = fi = Gi = gi = ψ(s) = ζ(s) = 0 (i = 1, 2), at ξ = 2yb − hξ, xl 6 x 6 xr.
(5.16)

In addition we again require conditions for the stream function, and the vorticity, at
the cylinder surface r = 1. As in our earlier discussion, § 4, the value of each term in
the expansion for ψ in (5.1), at r = 1, must be determined to ensure that the pressure
remains single-valued. As a consequence each term must satisfy the integral constraint
(4.12) from which the value of each, at the boundary, is determined. Similarly, our
earlier representation (4.11) for the boundary vorticity must be satisfied by each term
in the expression (5.2).

Equations (5.10)–(5.12), to be solved subject to (5.15), (5.16) and appropriate
conditions at r = 1, are discretized using a central-difference scheme and the resulting
finite-difference equations solved numerically by a point relaxation technique similar
to that outlined in § 4.

With the solution so obtained we have the force coefficients CL, CD given by

CL = ε(CL11 cos t+ CL12 sin t) + ε2(CL21 cos 2t+ CL22 sin 2t+ CL20) + ..., (5.17)

CD = ε(CD11 cos t+ CD12 sin t) + ε2(CD21 cos 2t+ CD22 sin 2t+ CD20) + ... . (5.18)
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Each of the coefficients of the time-harmonic terms in these expressions may be
expressed, through Gi, gi(i = 1, 2), ζ(s) as in (4.18), (4.19). For example

CL20 = − 1

Rb

∫ 2π

0

{
∂

∂r

(
ζ(s)

r

)}
r=1

cos θdθ, (5.19)

CD20 =
1

Rb

∫ 2π

0

{
∂

∂r

(
ζ(s)

r

)}
r=1

sin θdθ. (5.20)

In § 7 we compare results obtained by the perturbation method with those of
the full equations for small ε. Both approaches are, in principle, appropriate for
all finite values of Rb. However, there are numerical constraints associated with the

development of a boundary layer, thickness O(R
−1/2
b ), at the cylinder surface r = 1.

This is the familiar Stokes shear-wave layer. For the mesh sizes that we have been able
to employ this Stokes layer may be satisfactorily resolved up to values of Rb = O(102).
A detailed discussion of the Stokes layer, for Rb � 1, that is relevant to the present
investigation, has been given by Yan & Riley (1996).

6. Perturbation solution ε� 1, Rb = O(ε−2)

As we have remarked above the numerical processes we have introduced, with the
mesh sizes available, cannot adequately resolve the thin boundary layer that forms on
the cylinder for values of Rb in excess of O(102). In this section we are concerned with
situations for which Rb � 1. We do not present details of the Stokes-layer structure,
which is dealt with in detail by Yan & Riley (1996). Except we note that, as in other
oscillatory flow situations, a steady tangential streaming motion persists at the edge
of the Stokes layer which is shown by Yan & Riley to be determined as

vs(θ) =
3

4

{
∂ψ11

∂r

∂2

∂r∂θ
(ψ11 − ψ12) +

∂ψ12

∂r

∂2

∂r∂θ
(ψ11 + ψ12)

}
r=1

, (6.1)

with ψ11, ψ12 as in (2.14).
We now concentrate specifically on the induced steady streaming, often referred

to as ‘acoustic’ streaming, outside the Stokes layer. Our choice Rb = O(ε−2), or
Rs = ε2Rb = O(1) is motivated by the fact that Rs is the appropriate Reynolds
number for the streaming motion, as identified by Stuart (1963).

Again, we expand the stream function and vorticity as in (5.1), (5.2), and substitute
into the Navier–Stokes equations, in a manner discussed in some detail by Yan &
Riley (1996). It is the coefficient of ε4 that yields the governing equations for the
streaming at O(ε2) as, in the subdomain ΩI ,

1

Rs
∇2ζ(s) =

1

r

∂(ζ(s), ψ(s))

∂(r, θ)
+ Vd

r

∂ζ(s)

∂r
+
Vd
θ

r

∂ζ(s)

∂θ
, (6.2)

∇2ψ(s) = −ζ(s), (6.3)

where Vd
r , V

d
θ are the r- and θ-components of the Stokes drift velocity defined as

V d =

〈(∫ t

v1dt · ∇
)
v1

〉
, (6.4)
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with v1 determined from the first-order inviscid solution of § 2 as

v1 =

{
1

r

∂

∂θ
(ψ11 cos t+ ψ12 sin t),− ∂

∂r
(ψ11 cos t+ ψ12 sin t)

}
, (6.5)

and 〈·〉 denoting a time average.

Equation (6.2) represents a balance between diffusion and convection of the time-
averaged vorticity, with convection effected by the mean Lagrangian, rather than
Eulerian, velocity. It is the boundary-layer version of (6.2), (6.3) that is derived
by Yan & Riley (1996). Equations (6.2), (6.3) have their counterparts in the (x, ξ)
coordinate system in ΩII , ΩIII . The boundary conditions to be satisfied are

ψ(s) = ψ20, ζ(s) = 0, at ξ = h, xl 6 x 6 xr, and on x = xl, xr, 2yb − hξ 6 ξ 6 h,
(6.6)

ψ(s) = 0, ζ(s) = 0, at ξ = 2yb − hξ, xl 6 x 6 xr. (6.7)

There are further conditions to satisfy to ensure that our outer solution for ψ(s), ζ(s)

matches with the Stokes-layer solution. As far as the outer solution is concerned these
are to be applied at r = 1. Consider first the vorticity. If ψ(s)

i,j , ζ
(s)
i,j represent values at

r = 1 + ihr (i = 0, 1, 2, ...,Mr), and θ = jhθ (j = 1, 2, ..., Nθ) then we determine ζ(s)
0,j as

ζ
(s)
0,j =

48ψ(s)
1,j − 3ψ(s)

2,j − 45ψ(s)
0,j + 2h2

r (4ζ
(s)
1,j − ζ

(s)
2,j) + 6hrvsj(7− 3hr) + 4h3

r

(
2vs −

∂2vs

∂θ2

)
j

4h2
r (hr − 3)

.

(6.8)

Note when comparing (6.8) with (4.11) the role played by the streaming velocity vs(θ)
at the edge of the Stokes layer, which for the outer solution is interpreted as a velocity
of slip at r = 1.

For the value of the stream function at r = 1 we again must ensure that the
pressure is single-valued. To derive the condition on ψ(s) that ensures this we again
use the θ-momentum equation and pursue our perturbation procedure. As with the
stream function and vorticity we expand the velocity and pressure as

(v, p) =
∑
n=1

εn(vn, pn) (6.9)

and substitute into the θ-momentum equation. We do not include the considerable
detail of this process. It suffices to note that, again at O(ε4) and following a time
average,

〈p4|θ=2π − p4|θ=0〉 = − 1

Rs

∫ 2π

0

(
∂3ψ(s)

∂r3
+
∂2ψ(s)

∂r2
+ vs

)
r=1

dθ

=
1

Rs

∫ 2π

0

(
∂ζ(s)

∂r

)
r=1

dθ = 0. (6.10)

This result is identical with (4.12), and might have been anticipated since the pressure
is constant across the thin Stokes shear-wave layer. As before, equation (6.10) may be
used to determine the constant ψ(s)|r=1 following a suitable discretization. The method
of solution follows that outlined in § 4.
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Figure 2. Instantaneous streamlines obtained using the full Navier–Stokes calculations with
k = 0.5, h = 2, ε = 0.1 and Rb = 30: (a) at t − tp = 1

2
π, (b) at t − tp = π, (c) at t − tp = 3

2
π,

(d) at t− tp = 2π.

7. Results
The boundary conditions at ξ = h and x = xl, xr that we have adopted in each

of § 4, § 5 and § 6 are based on the inviscid theory of § 2. The inviscid solution has
been calculated using a boundary element technique; this is described in detail by
Riley & Yan (1996). As we have already indicated in the introduction these boundary
conditions, unlike those applied at the cylinder surface r = 1, are not exact. However,
we may expect them to be good approximations to the exact solutions at the large
Reynolds numbers and small wave amplitudes that are of interest to us. There is
support for this expectation from the work of Chaplin (1984) who finds agreement,
at small wave amplitudes, between the measured phase lag in the waves passing over
the cylinder and the linear theory of Ogilvie (1963). Furthermore Chaplin (private
communication) has recently made wave profile measurements in the nonlinear regime,
and when the wave amplitude is sufficiently small so that the wave does not break as
it passes over the cylinder finds excellent agreement with the inviscid results of Riley
& Yan (1996).

All three approaches to the viscous problem result in the numerical solution of a
system of partial differential equations. The hybrid mesh structure used, in all cases,
is described in § 3. For the full unsteady Navier–Stokes calculations of § 4 a fully
implicit Crank–Nicolson scheme is adopted, which has second-order accuracy and
is numerically stable. The solution is marched forward in time until it is sensibly
periodic. The initial conditions for ψ, ζ are arbitrary, but we calculate them in a way
such that the term ∂ζ/∂t in (3.3) is zero. Usually 30 to 40 complete periods elapse
before a periodic state is achieved, which represents a considerable computational
effort. The equations to be solved for the perturbation methods discussed in §§ 5 and
6 are independent of t; central differences are used for their discretization. In all cases
solution of the finite-difference equations that result from discretization is carried out
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Figure 3. Streaming flow, ψ(s), for k = 0.5, h = 2, ε = 0.1; the results shown on the left are obtained
using the full Navier–Stokes equations whilst those on the right are obtained using the perturbation
method in § 5: (a, b) Rb = 30, (c, d) Rb = 90, (e, f) Rb = 150.

using a point relaxation iteration technique. The values of xl, xr, re and yb which set
the sizes of subdomains for computational purposes vary, depending upon the value
of h. For h = 2 we choose xr = −xl = 5 whilst for h = 3 we choose xr = −xl = 7; the
value of re used in the calculations is h−0.2 and in all cases yb = −h. We note that in
the inviscid calculation xr and |xl | are very much larger than these values. The mesh
sizes employed vary, depending upon the value of the Reynolds number. Typically,
in the direction of t increasing, we have ht = π/30 whilst in ΩII , ΩIII the mesh sizes
in the x- and ξ-directions, hx and hξ , vary from 1/20 to 1/30, the corresponding
mesh sizes, hr, hθ , in the solution domain ΩI , respectively in the range 1/50 to 1/40
and π/80 to π/60, are smaller since larger flow variations are anticipated close to
the cylinder. We present results below for various values of the parameters involved,
but in particular for variations with Reynolds number. And although our different
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Figure 4. Streaming flow, ψ(s), for k = 0.5, h = 2 and (a) for Rs = 1.5, (b) Rs = 20,
(c) Rs = 50, (d) Rs = 100.

approaches enable us to calculate overall flow properties up to O(ε2), we do pay more
attention to the time-averaged flow about the cylinder.

In figure 2 we show instantaneous streamlines as calculated from the full Navier–
Stokes equations, § 4, at times t− tp = π/2, π, 3π/2, 2π, where tp = 2nπ is a time that is
sufficiently large for a periodic flow to have been established. The parameter values
for this case are k = 0.5, h = 2, ε = 0.1 and Rb = 30. We note, in particular, that
the streaming pattern at t − tp = 2π is not quite the mirror image about ψ = 0 of
the streamline pattern at t − tp = π; this is due to the presence of the streaming, or
non-zero time-averaged component of the flow which is in the nature of a circulatory
flow around the cylinder.

We turn next to this time-averaged component of the flow. First, we compare the
results obtained from the full Navier–Stokes equations, as described in § 4, with those
obtained from the perturbation solution of § 5. Both are appropriate for Rb = O(1),
and whereas the perturbation approach depends upon ε � 1 the Navier–Stokes
approach does not. However, for any comparison to be meaningful, a small value, of
ε must be adopted in the Navier–Stokes equations, and here we take ε = 0.1. Other
parameter values are k = 0.5, h = 2, and we present the time-averaged streamlines
in figure 3 for values of Rb = 30, 90 and 150. From the full Navier–Stokes solution
the streaming is extracted, for t > tp, by taking a time-average of the solution
over a period of 2π, and dividing the result by ε2. As may be expected the results
obtained by the two methods are very close, but not identical for the reason that
implicit within the Navier–Stokes solution are higher-order terms in ε that are, of
course, explicitly ignored in the time-independent solution ψ(s), ζ(s) of (5.1), (5.2). The
computational labour involved in solving the full Navier–Stokes equations, § 4, is
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Figure 5. Tangential velocity distributions obtained using the perturbation method in § 5 with
k = 0.5, h = 2: (a) Rb = 30, (b) Rb = 70, (c) Rb = 110, (d) Rb = 150.

enormous compared with that for the perturbation method, § 5. The results presented
in figure 3 confirm the effectiveness of the perturbation approach which is, therefore,
clearly to be preferred for values of Rb = O(1). We note from figure 3 that as Rb
increases so does the absolute value of the stream function at the cylinder surface.
This implies an increasingly vigorous circulatory flow as the Reynolds number Rb
increases.

For Rb greater than O(102) neither of the methods of §§ 4 and 5 is appropriate
on account of the development of the thin Stokes shear-wave boundary layer at
the cylinder surface. The perturbation solution of § 7 for Rs = ε2Rb = O(1) is then
appropriate. The Stokes layer in that case is accounted for explicitly and, with the
first-order inviscid solution determined, the steady streaming beyond the Stokes layer
is obtained from the solution of equations (6.2) and (6.3) and their counterparts in
ΩII and ΩIII . In figure 4 we show steady streaming streamlines ψ(s) = constant for
k = 0.5, h = 2 and the range of the streaming Reynolds numbers Rs = 1.5, 20, 50
and 100. These flow patterns show a continuous development of those of figure 3
with, again, an increasingly vigorous circulatory flow with Reynolds number. We
draw attention, in particular, to figure 4(a). The value Rs = 1.5 corresponds, with
ε = 0.1, to Rb = Rs/ε

2 = 150. And indeed we see the close resemblance between the
streaming flow patterns displayed in figures 3(e), 3(f) and 4(a) which demonstrates
that our different approaches to this problem are in harmony. To quantify this we
may usefully compare the values of ψ(s) at r = 1. For Rb = 30, 90, 150 these values
are, from the full Navier–Stokes equations of § 4 and the perturbation approach of
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Figure 6. Tangential velocity distributions obtained using the streaming Navier–Stokes cal-
culations in § 6 for Rs = 100: (a) (k, h) = (0.3, 2), (b) (k, h) = (0.5, 2), (c) (k, h) = (0.3, 3),
(d) (k, h) = (0.5, 3).

§ 5, (−0.988,−0.989), (−1.01,−1.01), (−1.16,−1.17). And in the latter case we have
for Rs = 1.5, from the perturbation theory of § 6, ψ(s)|r=1 = −1.18. As Rs increases
the flow close to r = 1 assumes a boundary-layer character with a boundary layer

of thickness O(R
−1/2
s ) within which is embedded the Stokes layer, which is thinner

by an amount O(ε). Outside this double boundary-layer structure the flow becomes
effectively inviscid. A consequence of this is that the clockwise circulation outside the
boundary layers will approach that which is predicted by Yan & Riley (1996) in their
theory associated with the formal limiting process Rs → ∞. Whilst the streamline
patterns for the time-averaged flow give some indication of the circulatory flow about
the cylinder, tangential velocity profiles are perhaps more revealing. In figure 5 we
show such velocity profiles in the neighbourhood of the cylinder with k = 0.5, h = 2
for various values of Rb, as calculated from the perturbation solution of § 5. We
note, as already anticipated, the Stokes-layer formation as Rb increases, and that
the velocity magnitude is greatest over the upper part of the cylinder. In figure 6
velocity profiles are presented for the case Rs = 100 for various values of k and
h, as calculated from the perturbation method in § 6. Similar features are noted,
including the development of an outer boundary layer. We also see that the vigour
of the circulatory flow increases as the cylinder depth decreases and the length of the
surface waves increases. The tangential velocity at r = 1 in this case represents that
at the edge of the Stokes layer which is, of course, non-zero.

We turn next to the circulation associated with the time-averaged flow ψ(s). Figure
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Figure 7. Circulations obtained for various values of k, h, Rb and Rs: (a) using the perturbation
method in § 5 for k = 0.5, h = 2, ε = 0.1: −−−+−−− , Rb = 90; −−−×−−− , Rb = 110; −−−◦−−− , Rb = 130;
−−−•−−− , Rb = 150; (b) using the streaming Navier–Stokes calculations in § 6 for Rs = 100 with various
values of k and h: −−−+−−− , k = 0.3, h = 2; −−−×−−− , k = 0.5, h = 2; −−−∗−−− , k = 0.6, h = 2; −−−◦−−− , k = 1, h = 2;
−−−•−−− , k = 2, h = 2; −−−�−−− , k = 0.3, h = 3; −−−4−−− , k = 0.5, h = 3; −−−⊕−−− , k = 1, h = 3.

7(a) shows the circulation, as calculated from the perturbation approach of § 5, for
k = 0.5, h = 2 and various values of Rb, and at various radial stations. The circulation
is, of course, zero at the cylinder and changes rapidly across the Stokes layer in each
case to a value that, in magnitude, slightly exceeds the value 4.2 calculated by Yan &
Riley (1996) at the edge of the Stokes layer. In figure 7(b) the circulation is shown at
several radial stations when Rs = 100 for various values of k and h. The circulation
at r = 1 is not zero since, in the perturbation approach in § 6, this now represents
the edge of the Stokes layer. For small values of k and h there is clear evidence of
the formation of an outer boundary layer; less so as the streaming velocity reduces
in magnitude. It is of interest to compare the circulation outside this outer boundary
layer, insofar as it can be determined from results displayed in figure 7(b), with those
of Yan & Riley (1996), as in table 1. The analysis of Yan & Riley, which involves
resolving a non-uniqueness of the inviscid flow by careful matching with the outer
boundary layer at the cylinder surface, is carried out in the formal limit Rs → ∞. By
contrast the results presented here are for finite Rs, and as a consequence we consider
the agreement, shown in table 1, to be good.

We next consider the forces acting on the cylinder. In figure 8(a, b) we show
the time variation, over a complete period, of the lift and drag coefficients for
k = 0.5, h = 2, ε = 0.1 and various values of Rb. These results are obtained from
the perturbation method of § 5, and are almost indistinguishable graphically from
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h = 2 h = 3

Circulations k = 0.3 k = 1 k = 2 k = 0.3 k = 1

Current method with Rs = 100 −12.1 −2.36 −0.357 −6.05 −0.361
Yan & Riley (1996) −10.6 −2.19 −0.371 −4.76 −0.25

Table 1. The circulations
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Figure 8. Lift and drag coefficients for k = 0.5, h = 2, ε = 0.1 and various values of Rb, as calculated
using the perturbation method in § 5: −−−+−−− , Rb = 10; −−−×−−− , Rb = 20; −−−∗−−− , Rb = 30; −−−◦−−− , Rb = 50;
−−−•−−− , Rb = 90; −−−�−−− , Rb = 150. (a) Lift coefficient, (b) drag coefficient.
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Figure 9. Second-order lift and drag coefficients for k = 0.5, h = 2: −−−◦−−− , CL20, 10 6 Rb 6 150;
−−−•−−− , CD20, 10 6 Rb 6 150; −−−⊕−−− , CL20, Rs = O(1); −−−4−−− , CD20, Rs = O(1); −−−−− , suggested
extrapolation; · · · · · · , CL20 as obtained from the inviscid solution of Ogilvie (1963).

those obtained from the full Navier–Stokes equations. The fluctuating lift and drag
forces are comparable in order of magnitude, with the phase of the latter lagging by
an amount π/4 compared with the lift. As the Reynolds number Rb increases, CL
and CD approach limiting forms since, for the wave amplitudes considered, there is
no flow separation. Although it is not immediately obvious from figure 8 the force
coefficients do, as we know, have a non-zero time average. In figure 9 we present
the time-independent lift and drag coefficients defined in (5.17)–(5.20). In addition to
results from the perturbation theory of § 5, up to Rb = 150, we also include results
for Rb � 1 calculated from the theory of § 6. The contribution from the pressure,
since pressure is constant across the Stokes layer, is determined from 〈p2〉, see (6.9).
The shear stress contribution is determined from the Stokes-layer solution, and is of

relative order of ε/R
1/2
s or R

−1/2
b compared to that of the pressure. From figure 9

we see that the horizontal, or drag, force tends to zero as Rb → ∞ but the vertical,
or lift, force tends to the finite value given by Ogilvie’s (1963) inviscid solution.
The persistence of lift in the infinite-Reynolds-number limit is not unexpected since
in the undisturbed waves, the total acceleration in the vertical direction at a given
submergence has a non-zero mean.

Chaplin (1984) has measured the forces on a cylinder beneath waves on water of
depth large compared with the cylinder radius. We are able to make a comparison
with some of the results for his Case E, for which h = 2, k = 0.206, Rb = 9488. In
figure 10 we show the amplitude of the dominant lift force coefficient as a function
of Rb. For Rb 6 150 the constituent parts are calculated in a manner similar to (5.19).
For larger values of Rb we use, as with the results in figure 9, the theory of § 6 with
the pressure contribution now calculated from p1 in (6.9), and the shear stress from

the Stokes layer. The latter, again, is of relative order R
−1/2
b . Our results are seen to

agree closely with the measured result of Chaplin at Rb = 9488 and to be consistent
with Ogilvie’s (1963) inviscid result. Finally, we make a comparison with Chaplin’s



192 B. Yan and N. Riley

10000100010010

4

5

6

7

Rb

(C
2 L

11
 +

 C
2 L

12
)1/

2

Figure 10. Magnitude of the first-order lift as a function of Rb for k = 0.206, h = 2:
−−−◦−−− , 20 6 Rb 6 150; −−−−−−− , Rs = O(1); − − − − − , suggested extrapolation; • , Chaplin
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Figure 11. Second-order lift as a function of ε for k = 0.206, h = 2: • , Chaplin (1984), Case E;
method of § 5, −−−�−−− , Rb = 30; −−−◦−−− , Rb = 90; −−−4−−− , Rb = 150; method of § 6, −−−−−−− , Rb = 9488.

measured, time-averaged lift as ε varies. The experimental results are plotted in figure
11, where we also include the lift, calculated from (5.19), from our perturbation
method of § 5 for values of Rb in the range 30 6 Rb 6 150. Although these Reynolds
numbers are smaller by a factor O(102) than the experimental value, we see that the
results reflect the trend of the measured force, and approach the measured values as
Rb increases. The experimental results encompass values of the streaming Reynolds
number in the range O(102) to O(103), and therefore fall within the framework of § 6.
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The time-averaged lift coefficient from the theoretical development for Rs = O(1) is
seen, in figure 11, to match the measured values very closely, except for the larger
values of ε where terms of higher order than those we have calculated in our series
(5.1), (6.9) may be expected to be non-negligible. The lift coefficient is dominated
by 〈ε2p2〉, and although we have included the leading-order time-independent shear

stresses, determined from the Stokes layer, these are of relative order ε/R
1/2
s , and

contribute an insignificant amount to the results shown in figure 11. Our results offer
an explanation for the good agreement, for the lift coefficient, between the viscous
predictions at high Reynolds numbers and the analytical inviscid solution of Ogilvie
(1963). It should be noted that some other components of the force are strongly
influenced by non-zero viscosity.

8. Conclusions

For a circular cylinder placed beneath a free surface on which waves of small,
dimensionless, amplitude ε propagate we have studied the resulting flow at finite
Reynolds number. With Rb = a2ω/ν = O(1) we have adopted a two-pronged ap-
proach. On the one hand we have attacked the Navier–Stokes equations directly,
whilst on the other we have taken advantage of the fact that ε� 1 and constructed
a regular perturbation series. The results from the two approaches are in excellent
agreement. That being so the perturbation approach is to be preferred since, unless
transient effects, following an impulsive start say, are important the direct numerical
approach is far more demanding of computer time. For Rb � 1 neither approach
is appropriate on account of the thin Stokes shear-wave layer that develops on the
cylinder. For large Reynolds numbers we have adopted, in § 6, a singular pertur-
bation approach. This is valid for Rb = O(ε−2), or Rs = ε2Rb = O(1). This latter
parameter is known to be appropriate as the Reynolds number for the induced time-
independent, or streaming, component of the flow. In this formulation the Stokes
layer is accounted for explicitly, and the solution for the flow outside it addressed
directly. For Rs small we are able to demonstrate agreement with the results obtained
from the formulation for Rb = O(1). Similarly, for Rs � 1, we are able to demon-
strate that the solutions are approaching those of Yan & Riley (1996), where the
formal limit Rs → ∞ resulted in a double boundary-layer structure at the cylinder
surface.

For waves of small amplitude the fluid flow of the title problem, correct to O(ε2),
has been treated in the inviscid flow limit by Riley & Yan (1996), and in the infinite
Reynolds number limit for a viscous fluid by Yan & Riley (1996). In the present
paper we have endeavoured to extend these results to finite Reynolds numbers. Since
viscous effects will be largely confined to the region of the cylinder itself, at which the
no-slip condition must be satisfied, we have approximated the free-surface conditions
by adopting values of the stream function at the free surface determined from the
inviscid solution. We anticipate that this approximation will be a good one at the
large Reynolds numbers of interest, and comparison with experiment adds confidence
to this view.

The authors would like to thank the Marine Technology Directorate for financial
support, and also two referees whose penetrating comments have improved this
paper.
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